A generalization of random matrix theory and its application to statistical physics.

نویسندگان

  • Duan Wang
  • Xin Zhang
  • Davor Horvatic
  • Boris Podobnik
  • H Eugene Stanley
چکیده

To study the statistical structure of crosscorrelations in empirical data, we generalize random matrix theory and propose a new method of cross-correlation analysis, known as autoregressive random matrix theory (ARRMT). ARRMT takes into account the influence of auto-correlations in the study of cross-correlations in multiple time series. We first analytically and numerically determine how auto-correlations affect the eigenvalue distribution of the correlation matrix. Then we introduce ARRMT with a detailed procedure of how to implement the method. Finally, we illustrate the method using two examples taken from inflation rates for air pressure data for 95 US cities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

APPLICATION OF THE RANDOM MATRIX THEORY ON THE CROSS-CORRELATION OF STOCK ‎PRICES

The analysis of cross-correlations is extensively applied for understanding of interconnections in stock markets. Variety of methods are used in order to search stock cross-correlations including the Random Matrix Theory (RMT), the Principal Component Analysis (PCA) and the Hierachical ‎Structures.‎ In ‎this work‎, we analyze cross-crrelations between price fluctuations of 20 ‎company ‎stocks‎...

متن کامل

Random fixed point of Meir-Keeler contraction mappings and its application

In this paper we introduce a generalization of Meir-Keeler contraction forrandom mapping T : Ω×C → C, where C be a nonempty subset of a Banachspace X and (Ω,Σ) be a measurable space with being a sigma-algebra of sub-sets of. Also, we apply such type of random fixed point results to prove theexistence and unicity of a solution for an special random integral equation.

متن کامل

Random matrix theory within superstatistics.

We propose a generalization of the random matrix theory following the basic prescription of the recently suggested concept of superstatistics. Spectral characteristics of systems with mixed regular-chaotic dynamics are expressed as weighted averages of the corresponding quantities in the standard theory assuming that the mean level spacing itself is a stochastic variable. We illustrate the meth...

متن کامل

(T,S)-BASED INTERVAL-VALUED INTUITIONISTIC FUZZY COMPOSITION MATRIX AND ITS APPLICATION FOR CLUSTERING

In this paper, the notions of $(T,S)$-composition matrix and$(T,S)$-interval-valued intuitionistic fuzzy equivalence matrix areintroduced where $(T,S)$ is a dual pair of triangular module. Theyare the generalization of composition matrix and interval-valuedintuitionistic fuzzy equivalence matrix. Furthermore, theirproperties and characterizations are presented. Then a new methodbased on $tilde{...

متن کامل

Superstatistical random-matrix-theory approach to transition intensities in mixed systems.

We study the fluctuation properties of transition intensities applying a recently proposed generalization of the random matrix theory, which is based on Beck and Cohen's superstatistics. We obtain an analytic expression for the distribution of the reduced transition probabilities that applies to systems undergoing a transition out of chaos. The obtained distribution fits the results of a previo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chaos

دوره 27 2  شماره 

صفحات  -

تاریخ انتشار 2017